Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 16, 2026
- 
            Free, publicly-accessible full text available January 7, 2026
- 
            Meka, Raghu (Ed.)Given a weighted graph G = (V,E,w), a (β, ε)-hopset H is an edge set such that for any s,t ∈ V, where s can reach t in G, there is a path from s to t in G ∪ H which uses at most β hops whose length is in the range [dist_G(s,t), (1+ε)dist_G(s,t)]. We break away from the traditional question that asks for a hopset H that achieves small |H| and small diameter β and instead study the sensitivity of H, a new quality measure. The sensitivity of a vertex (or edge) given a hopset H is, informally, the number of times a single hop in G ∪ H bypasses it; a bit more formally, assuming shortest paths in G are unique, it is the number of hopset edges (s,t) ∈ H such that the vertex (or edge) is contained in the unique st-path in G having length exactly dist_G(s,t). The sensitivity associated with H is then the maximum sensitivity over all vertices (or edges). The highlights of our results are: - A construction for (Õ(√n), 0)-hopsets on undirected graphs with O(log n) sensitivity, complemented with a lower bound showing that Õ(√n) is tight up to polylogarithmic factors for any construction with polylogarithmic sensitivity. - A construction for (n^o(1), ε)-hopsets on undirected graphs with n^o(1) sensitivity for any ε > 0 that is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between β, ε, and the sensitivity. - We define a notion of sensitivity for β-shortcut sets (which are the reachability analogues of hopsets) and give a construction for Õ(√n)-shortcut sets on directed graphs with O(log n) sensitivity, complemented with a lower bound showing that β = Ω̃(n^{1/3}) for any construction with polylogarithmic sensitivity. We believe hopset sensitivity is a natural measure in and of itself, and could potentially find use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly motivated by the Differentially Private All Sets Range Queries problem [Deng et al. WADS 23]. Our result for O(log n) sensitivity (Õ(√n), 0)-hopsets on undirected graphs immediately improves the current best-known upper bound on utility from Õ(n^{1/3}) to Õ(n^{1/4}) in the pure-DP setting, which is tight up to polylogarithmic factors.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Guruswami, Venkatesan (Ed.)The aspect ratio of a (positively) weighted graph G is the ratio of its maximum edge weight to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph algorithms, especially related to the computation of shortest paths. Popular paradigms are to interpolate between the settings of weighted and unweighted input graphs by incurring a dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect ratio. This paper studies the effects of these paradigms, investigating whether graphs of low aspect ratio have more structured shortest paths than graphs in general. In particular, we raise the question of whether one can generally take a graph of large aspect ratio and reweight its edges, to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths. Our findings are: - Every weighted DAG on n nodes has a shortest-paths preserving graph of aspect ratio O(n). A simple lower bound shows that this is tight. - The previous result does not extend to general directed or undirected graphs; in fact, the answer turns out to be exponential in these settings. In particular, we construct directed and undirected n-node graphs for which any shortest-paths preserving graph has aspect ratio 2^{Ω(n)}. We also consider the approximate version of this problem, where the goal is for shortest paths in H to correspond to approximate shortest paths in G. We show that our exponential lower bounds extend even to this setting. We also show that in a closely related model, where approximate shortest paths in H must also correspond to approximate shortest paths in G, even DAGs require exponential aspect ratio.more » « less
- 
            Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths when edges can have negative integer weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in all these settings to n^{o(1)} calls to any SSSP algorithm that works on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source. More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with - W_{SSSP}(m,n)n^{o(1)} work and S_{SSSP}(m,n)n^{o(1)} span, given access to a non-negative-weight SSSP algorithm with W_{SSSP}(m,n) work and S_{SSSP}(m,n) span in the parallel model, and - T_{SSSP}(n,D)n^{o(1)} rounds, given access to a non-negative-weight SSSP algorithm that takes T_{SSSP}(n,D) rounds in CONGEST, and - Q_{SSSP}(m,n)n^{o(1)} quantum edge queries, given access to a non-negative-weight SSSP algorithm that takes Q_{SSSP}(m,n) queries in the quantum edge query model. This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [Bernstein et al., 2022], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms for negative-weight SSSP with - m^{1+o(1)} work and n^{1/2+o(1)} span in the parallel model, and - (n^{2/5}D^{2/5} + √n + D)n^{o(1)} rounds in CONGEST, and - m^{1/2}n^{1/2+o(1)} quantum queries to the adjacency list or n^{1.5+o(1)} quantum queries to the adjacency matrix. Up to a n^{o(1)} factor, the parallel and distributed results match the current best upper bounds for reachability [Jambulapati et al., 2019; Cao et al., 2021]. Consequently, any improvement to negative-weight SSSP in these models beyond the n^{o(1)} factor necessitates an improvement to the current best bounds for reachability. The quantum result matches the lower bound up to an n^{o(1)} factor [Aija Berzina et al., 2004]. Our main technical contribution is an efficient reduction from computing a low-diameter decomposition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models, and been rather unstudied in quantum models. The directed LDD is a crucial step of the sequential algorithm in [Bernstein et al., 2022], and we think that its applications to other problems in parallel and distributed models are far from being exhausted. Other ingredients of our results include altering the recursion structure of the scaling algorithm in [Bernstein et al., 2022] to surmount difficulties that arise in these models, and also an efficient reduction from computing strongly connected components to computations of SSSP with a virtual source in CONGEST. The latter result answers a question posed in [Bernstein and Nanongkai, 2019] in the negative.more » « less
- 
            We report single-shot, time-resolved observation of self-steepening and temporal splitting of near-infrared, 50 fs, micro-joule pulses propagating nonlinearly in flint (SF11) glass. A coherent, smooth-profiled, 60-nm-bandwidth probe pulse that propagated obliquely to the main pulse through the Kerr medium recorded a time sequence of longitudinal projections of the main pulse’s induced refractive index profile in the form of a phase-shift “streak,” in which frequency–domain interferometry recovered with ∼10 fs temporal resolution. A three-dimensional simulation based on a unidirectional pulse propagation equation reproduced observed pulse profiles.more » « less
- 
            Tauman_Kalai, Yael (Ed.)In the weighted load balancing problem, the input is an n-vertex bipartite graph between a set of clients and a set of servers, and each client comes with some nonnegative real weight. The output is an assignment that maps each client to one of its adjacent servers, and the load of a server is then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is well-balanced, typically captured by (approximately) minimizing either the 𝓁_∞- or 𝓁₂-norm of the server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for an assignment that approximately minimizes all 𝓁_p-norm objectives for p ≥ 1, including p = ∞, simultaneously. Our main result is a deterministic O(log n)-pass O(1)-approximation semi-streaming algorithm for the all-norm load balancing problem. Prior to our work, only an O(log n)-pass O(log n)-approximation algorithm for the 𝓁_∞-norm objective was known in the semi-streaming setting. Our algorithm uses a novel application of the multiplicative weights update method to a mixed covering/packing convex program for the all-norm load balancing problem involving an infinite number of constraints.more » « less
- 
            We present a randomized algorithm that computes single-source shortest paths (SSSP) in O(mlog8(n)logW) time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are O~((m+n1.5)logW) [BLNPSSSW FOCS'20] and m4/3+o(1)logW [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic O~(mn−−√logW) bound from over three decades ago [Gabow and Tarjan SICOMP'89].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available